
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(11), 1249–1265 (NOVEMBER 1993)

Engineering a Sort Function

JON L. BENTLEY

M. DOUGLAS McILROY
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY

We recount the history of a new qsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

KEY WORDS Quicksort Sorting algorithms Performance tuning Algorithm design and implementation Testing

INTRODUCTION

C libraries have long included a qsort function to sort an array, usually implemented by
Hoare’s Quicksort.1 Because existing qsorts are flawed, we built a new one. This paper
summarizes its evolution.

Compared to existing library sorts, our new qsort is faster—typically about twice as
fast—clearer, and more robust under nonrandom inputs. It uses some standard Quicksort
tricks, abandons others, and introduces some new tricks of its own. Our approach to build-
ing a qsort is relevant to engineering other algorithms.

The qsort on our home system, based on Scowen’s ‘Quickersort’,2 had served faith-
fully since Lee McMahon wrote it almost two decades ago. Shipped with the landmark Sev-
enth Edition Unix System,3 it became a model for other qsorts. Yet in the summer of
1991 our colleagues Allan Wilks and Rick Becker found that a qsort run that should have
taken a few minutes was chewing up hours of CPU time. Had they not interrupted it, it
would have gone on for weeks.4 They found that it took n 2 comparisons to sort an ‘organ-
pipe’ array of 2n integers: 123..nn.. 321.

Shopping around for a better qsort, we found that a qsort written at Berkeley in 1983
would consume quadratic time on arrays that contain a few elements repeated many
times—in particular arrays of random zeros and ones.5 In fact, among a dozen different
Unix libraries we found no qsort that could not easily be driven to quadratic behavior; all
were derived from the Seventh Edition or from the 1983 Berkeley function. The Seventh

0038-0644/93/111249–17$13.50 Received 21 August 1992
 1993 by John Wiley & Sons, Ltd. Revised 10 May 1993

ENGINEERING A SORT FUNCTION 1250

Edition qsort and several others had yet another problem. They used static storage and
thus would fail if called recursively from within the comparison function or if used in a
multithreaded computation.

Unable to find a good enough qsort, we set out to build a better one. The algorithm
should avoid extreme slowdowns on reasonable inputs, and should be fast on ‘random’
inputs. It should also be efficient in data space and code space. The sort need not be stable;
its specification does not promise to preserve the order of equal elements.

THE QSORT INTERFACE

Despite its suggestive name, the qsort function need not be implemented by Quicksort.
We’ll first implement the function with an insertion sort, which, though slow, will prove
useful in an industrial-strength sort later. Our starting point, iisort, sorts n integers in
the array a but lacks the qsort interface. (In the naming scheme used throughout this
paper, the first i in iisort stands for ‘integer’, the second for ‘insertion’.) The algorithm
varies index i from the second through the last element of the array, and varies j to sift the
i-th element down to its proper place in the preceding subarray.

void iisort(int *a, int n)
{

int i, j;

for (i = 1; i < n; i++)
for (j = i; j > 0 && a[j-1] > a[j]; j--)

iswap(j, j-1, a);
}

The function iswap(i, j, a) exchanges the integers a[i] and a[j]. Insertion sort
uses about n 2/4 comparisons on a randomly permuted array, and it never uses more than
n 2/2 comparisons.

This iisort function sorts only integers. For the moment, we take the general qsort
interface to be†

void qsort(char *a, int n, int es, int (*cmp)());

The first parameter points to the array to be sorted. The next two parameters tell the number
of elements and the element size in bytes. The last parameter is a comparison function that
takes two pointer arguments. The function returns an integer that is less than, equal to, or
greater than zero when the first argument points to a value less than, equal to, or greater than
the second. Here is a typical comparison function and a sample call to sort an array of non-
negative integers.
hhhhhhhhhhh

† We have used simple parameter declarations for readability. The official prototype in the ANSI standard
header file, <stdlib.h>, is6

void qsort(void *, size_t, size_t, int (*)(const void *, const void *));

This declaration can be used no more honestly than ours. The first argument compels casting in the source of
qsort; the last compels casting in programs that call it. In practical terms, though, our declaration precludes
portable compatibility with library qsorts. Hence we will change the int parameters to size_t in our pro-
duction model, Program 7.

1251 J. L. BENTLEY AND M. D. McILROY

void swap(char *i, char *j, int n)
{

do {
char c = *i;
*i++ = *j;
*j++ = c;

} while (--n > 0);
}

Program 1. A simple swap function

int intcomp(int *i, int *j) { return *i - *j; }
...
qsort((char *) a, n, sizeof(int), intcomp);

To sort an array of len-byte strings with terminal null characters, use the standard string-
comparison routine, strcmp:

qsort(a, n, len, strcmp);

To sort an array of pointers to strings, use strcmp with another level of indirection.

int pstrcmp(char **i, char **j) { return strcmp(*i, *j); }
...
qsort(a, n, sizeof(char *), pstrcmp);

By straightforward rewriting we convert iisort to handle a qsort-like interface.

void isort(char *a, int n, int es, int (*cmp)())
{

char *pi, *pj;

for (pi = a + es; pi < a + n*es; pi += es)
for (pj = pi; pj > a && cmp(pj-es, pj) > 0; pj -= es)

swap(pj, pj-es, es);
}

The function swap(i,j,n), defined in Program 1, interchanges n-byte fields pointed to
by i and j. We will say more about swapping later.

A SIMPLE QSORT

Quicksort is a divide-and-conquer algorithm: partition the array, placing small elements on
the left and large elements on the right, and then recursively sort the two subarrays.
Sedgewick studied Quicksort in his Ph.D. thesis7 and later papers;8-10 it is widely described
in texts11, 12 and bibliographies.13

Program 2 is a trivial Quicksort, which uses a partitioning scheme due to Lomuto.14 This
code partitions around the first element in the array, which is finally placed in a[j]. To
sort the left subarray a[0..j-1], we call iqsort0(a, j). To sort the right subarray
a[j+1..n-1], we use C pointer arithmetic and call iqsort0(a+j+1, n-j-1).

Hoare proves that on n randomly permuted distinct elements, Quicksort makes Cn ∼∼
2n ln n ∼∼ 1.386n lg n comparisons.1 Unfortunately, Program 2 is sometimes much slower.
On arrays that are already sorted, it makes roughly n 2/2 comparisons. To avoid this prob-
lem Hoare suggests partitioning around a random element; we adopt the technique in Pro-
gram 3. Program 2 also takes quadratic time on arrays of identical elements.

ENGINEERING A SORT FUNCTION 1252

void iqsort0(int *a, int n)
{

int i, j;

if (n <= 1) return;
for (i = 1, j = 0; i < n; i++)

if (a[i] < a[0])
swap(++j, i, a);

swap(0, j, a);
iqsort0(a, j);
iqsort0(a+j+1, n-j-1);

}

Program 2. A toy Quicksort, unfit for general use

A more efficient (and more familiar) partitioning method uses two indexes i and j.
Index i scans up from the bottom of the array until it reaches a large element (greater than
or equal to the partition value), and j scans down until it reaches a small element. The two
array elements are then swapped, and the scans continue until the pointers cross.

This algorithm is easy to describe, and also easy to get wrong—Knuth tells horror stories
about inefficient partitioning algorithms.15 We avoid problems by using an invariant due to
Sedgewick:7

T ≤T ? ≥T

0 i j n-1

Partition around the element a[0], which we abbreviate as T. Increment i over elements
less than T; on reaching an element greater than or equal to T, start moving j down. When
both scans stop, swap the two elements and continue the process. (It is important that both
inner loops stop on an equal element. The Berkeley qsort takes quadratic time on random
zeros and ones precisely because it scans over equal elements; try an example to understand
why.) At the end of the partitioning loop i=j+1. Swap a[0] and a[j] to yield:

≤T T ≥T

0 j i n-1

Now call qsort recursively on the subarrays a[0..j-1] and a[j+1..n-1].
Program 3 combines these ideas into a clean and efficient Quicksort specialized for

integers—a fine starting point for building more elaborate functions. One such elaboration
is Program 4, which supports the qsort interface. Only a third the size of the Seventh Edi-
tion qsort, it is still about twenty percent faster on average; and it avoids the bad quadratic
case. It is the seed for our final algorithm.

A COST MODEL

Before we speed up Program 4, we need an idea of the costs of the critical operations. Bent-
ley, Kernighan and Van Wyk describe a program that generates cost estimates for common
C operations on a particular hardware/software system.16 We modified that program to mea-

1253 J. L. BENTLEY AND M. D. McILROY

void iqsort1(int *a, int n)
{

int i, j;

if (n <= 1) return;
i = rand() % n;
swap(0, i, a);
i = 0;
j = n;
for (;;) {

do i++; while (i < n && a[i] < a[0]);
do j--; while (a[j] > a[0]);
if (j < i) break;
swap(i, j, a);

}
swap(0, j, a);
iqsort1(a, j);
iqsort1(a+j+1, n-j-1);

}
Program 3. A simple Quicksort for integers

void qsort1(char *a, int n, int es, int (*cmp)())
{

int j;
char *pi, *pj, *pn;

if (n <= 1) return;
pi = a + (rand() % n) * es;
swap(a, pi, es);
pi = a;
pj = pn = a + n * es;
for (;;) {

do pi += es; while (pi < pn && cmp(pi, a) < 0);
do pj -= es; while (cmp(pj, a) > 0);
if (pj < pi) break;
swap(pi, pj, es);

}
swap(a, pj, es);
j = (pj - a) / es;
qsort1(a, j, es, cmp);
qsort1(a + (j+1)*es, n-j-1, es, cmp);

}
Program 4. A simple qsort

sure the cost of about forty common sorting operations. Table I shows the cost of a dozen
representative operations using the lcc compiler17 for ANSI C on a VAX 8550.

On this system, bookkeeping operations cost a few tenths of a microsecond, comparisons
start at a few microseconds and go up from there, and swapping four-byte fields weighs in at
a whopping dozen microseconds. (The strcmp time is for comparing two 10-byte strings
that differ only in the last byte.)

The outlier is the swap function from Program 1. As the appendix reports, it is even
more expensive on other systems. There are several reasons: four bytes are swapped in a
loop, the loop maintains two pointers and a count, and the function calling sequence takes a
couple of microseconds. As a benchmark, swapping two integers in inline code takes just
under a microsecond. In the appendix, the swap code is tuned to exploit this common spe-

ENGINEERING A SORT FUNCTION 1254

Table Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CPU Microsecondsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Int Operations
i1 = i2 + i3 0.20
i1 = i2 - i3 0.20

Pointer Operations
p1 -= es 0.17
p1 += es 0.16

Control Structures
if (p1 == p2) i1++ 0.32
while (p1 < p2) i1++ 0.26

Comparison Functions
i1 = intcomp(&i2, &i3) 2.37
i1 = floatcomp(&f2, &f3) 3.67
i1 = dblcomp(&d2, &d3) 3.90
i1 = strcmp(s2, s3) 8.74

Swap Functions
swap(p1, p2, 4) 11.50
t = *i1, *i1 = *i2, *i2 = t 0.84iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cial case, using inline swaps for integer-sized objects and a function call otherwise. This
reduces the cost of swapping two four-byte fields to around a microsecond.

The tuned swap costs about three times as much as bookkeeping operations, and compar-
isons cost about three times as much as swaps. These ratios differ dramatically from the
costs of sorts specialized to integers, which figure heavily in textbook analyses. In the inte-
ger models, of which Knuth’s MIX programs are classic examples,12 comparison costs
about as much as bookkeeping, while swapping is a few times more expensive. The two
cost models can be summarized as:

MIX: overhead ∼∼ comparisons < swaps
qsort: overhead < swaps < comparisons

The second model reflects the generality of the qsort interface, in which comparison is a
function, not a machine primitive. The inappropriateness of the MIX model was pointed out
by Linderman in discussing the Unix sort utility: ‘Because comparison ... is interpretive, it
is generally more time-consuming than the standard paradigm of comparing two integers.
When a colleague and I modified sort to improve reliability and efficiency, we found that
techniques that improved performance for other sorting applications sometimes degraded the
performance of sort.’18

CHOOSING A PARTITIONING ELEMENT

Partitioning about a random element takes Cn ∼∼ 1.386n lg n comparisons. We now whittle
away at the constant in the formula. If we were lucky enough to choose the median of every
subarray as the partitioning element, we could reduce the number of comparisons to about
n lg n. In default of the true median, which is expensive to compute, we seek a cheap
approximation.

Hoare proposed using the median of a small sample of array elements. Singleton sug-
gested the median of the first, middle and last elements of the array.19 Partitioning around
the median of three random elements reduces the expected number of comparisons to Cn, 3 ∼∼

1255 J. L. BENTLEY AND M. D. McILROY

a:b

b:c

a:c

b:c

a:cabc

acb cab bac bca

cba

<

< >

< >

>

<

< >

>

static char *med3(char *a, char *b, char *c, int (*cmp)())
{ return cmp(a, b) < 0 ?

(cmp(b, c) < 0 ? b : cmp(a, c) < 0 ? c : a)
: (cmp(b, c) > 0 ? b : cmp(a, c) > 0 ? c : a);

}

Program 5. Decision tree and program for median of three

12/7n ln n ∼∼ 1.188n lg n. But while Quicksort originally took Cn/6 swaps, a median-of-
three partition increases the swaps to Cn, 3/5, for an increase of about three percent.12

Program 5 finds the median of three elements, using the qsort comparison function. It
takes two or three comparisons (8/3 on average) and no swaps to evaluate the decision tree
shown.

With more effort finding a central element, we can push the number of comparisons
closer to n lg n. We adopted Tukey’s ‘ninther’, the median of the medians of three samples,
each of three elements. Weide analyzes the quality of such pseudo-medians.20 The ninther
yields a better-balanced recursion tree at the cost of at most twelve extra comparisons.
While this is cheap for large arrays, it is expensive for small arrays. Our final code therefore
chooses the middle element of smaller arrays, the median of the first, middle and last ele-
ments of a mid-sized array, and the pseudo-median of nine evenly spaced elements of a
large array. In the following code the size breaks were determined empirically.

pm = a + (n/2)*es; /* Small arrays, middle element */
if (n > 7) {

pl = a;
pn = a + (n-1)*es;
if (n > 40) { /* Big arrays, pseudomedian of 9 */

s = (n/8)*es;
pl = med3(pl, pl+s, pl+2*s, cmp);
pm = med3(pm-s, pm, pm+s, cmp);
pn = med3(pn-2*s, pn-s, pn, cmp);

}
pm = med3(pl, pm, pn, cmp); /* Mid-size, med of 3 */

}

This scheme performs well on many kinds of nonrandom inputs, such as increasing and
decreasing sequences. We could get fancier and randomize the sample, but a library sort has
no business side-effecting the random number generator.

We experimented to find the average number of comparisons used by this algorithm. We
set n to each power of two from 128 to 65,536, generated 11 sets of n random 30-bit inte-
gers, and counted the number of comparisons used by Program 4. A weighted least-squares
regression fit the data to the function 1.362n lg n − 1.41n, which is close to the theoretical
1.386n lg n + O(n). Similar experiments on Program 7, which uses the adaptive scheme,

ENGINEERING A SORT FUNCTION 1256

showed that it makes 1.094n lg n − 0.74n comparisons. This is a substantial improve-
ment over choosing a random element, and close to the lower bound of n lg n − 1.44n.

A TIMING TESTBED

We built a simple testbed to measure the times of qsorts on random data. It takes five
inputs: the name of a sort routine, the number and kind of data to sort, a modulus by which
numbers should be reduced, and a count of the number of experiments to perform. Here is
an interactive session:

q7 10000 i 50000 3
q7 10000 i 50000 3 73 77 68 9.11
q1 10000 i 50000 3
q1 10000 i 50000 3 55 56 58 7.07

The user typed the first line, requesting that the Seventh Edition qsort (q7) be run on
an array of 10000 integers taken modulo 50000 in 3 experiments. The program writes
the second line, which echoes the five input fields, followed by the three run times in soft-
ware clock ticks (sixtieths of a second on a VAX). The final field says that the sort required
an average of 9.11n lg n microseconds. The third line requests similar experiments on Pro-
gram 4 (q1), and the fourth line reports an average run time of 7.07n lg n microseconds,
about twenty percent faster than the Seventh Edition qsort.

Integers are cheap to compare and to swap; sorting them highlights overhead costs. By
sorting the same sets of values in other representations, the testbed reveals performance
across a spectrum of relative costs for overhead, swaps and comparisons. Single-precision
floating-point numbers are the same size as integers to swap and slightly more expensive to
compare; doubles are more expensive in both categories. Twenty-byte records whose first
four bytes are integer keys yield fast comparisons and slow swaps. Twenty-character strings
of five spaces followed by the decimal representation of integers are slow to compare and to
swap. Finally, pointers to the latter are slow to compare and fast to swap.

THE OPPORTUNITY OF EQUAL ELEMENTS

Our original performance goal was good running time across most inputs. We deliberately
decided not to tune the code to be fast on particular classes of inputs, such as ‘almost
sorted’, even though others have found this approach fruitful.21, 22 We were soon moved
from our extreme position.

The version of qsort that we first offered locally was essentially Program 4 with adap-
tive partitioning. A friendly user found that the new qsort was typically thirty or forty
percent faster than the existing function. But he also reported that on arrays with many
identical elements our qsort slowed down slightly, while the Seventh Edition qsort ran
like the wind. We explained our philosophical position, to which he rightly replied that it
was unthinkable to replace a library routine with a program that was inferior on a common
class of inputs: many users sort precisely to bring together equal elements.

Our testbed shows that Program 4 takes eight times as long to sort an array of 100,000
random integers mod 2 (zeros and ones) as does the Seventh Edition qsort:

q1 100000 i 2 3 768 756 756 7.63
q7 100000 i 2 3 96 93 91 0.94

1257 J. L. BENTLEY AND M. D. McILROY

On an array of equal elements, Program 4 exchanges every possible pair of elements in a
perfectly balanced recursion tree. Seventh Edition qsort, though, uses a ‘fat partition’ that
finishes after a single scan through the elements. We therefore sought further to sort many
identical elements efficiently without slowing down on distinct elements. (Sedgewick ana-
lyzes the performance of standard Quicksorts on equal elements.9)

While our previous partitioning code divided the input into two subsequences, a fat parti-
tion divides the input into three:

< = >

After partitioning, recur on the two subarrays at the ends, and ignore the equal elements in
the middle.

Tripartite partitioning is equivalent to Dijkstra’s ‘Dutch National Flag’ problem.23 Many
programs (including Dijkstra’s and the Seventh Edition qsort) use an invariant like

< = ? >

This gives code that is complex and slow. Equal elements at the left of the array take O (n)
extra swaps as they sift up to the middle. To get a more efficient fat partition we turn to
another invariant,

= < ? >

After partitioning, bring the equals to the middle by swapping outer ends of the two left por-
tions. Though this invariant is workable, a symmetric version leads to clearer code:

= < ? > =

a b c d

As index b moves up, scan over lesser elements, swap equal elements to the element
pointed to by a, and stop at a greater element. Move index c down similarly, then swap the
elements pointed to by b and c, adjust those pointers, and continue. (Wegner proposes
exactly this invariant but maintains it with more complex three-way exchanges.24) On
reaching the state

= < > =

a bc d

swap equals from the ends back to the middle. Program 6 shows an integer Quicksort that
employs such ‘split-end’ partitioning. For brevity, it uses a random partitioning element.

Split-end partitioning is usually efficient. When all elements are distinct, it swaps only
pairs of elements that are out of order. When equals predominate, it wastes time swapping
them to the end and back to the middle. But we may amortize that effort against recursive
calls not made on those equal elements. On arrays of random zeros and ones, our final

ENGINEERING A SORT FUNCTION 1258

void iqsort2(int *x, int n)
{

int a, b, c, d, l, h, s, v;

if (n <= 1) return;
v = x[rand() % n];
a = b = 0;
c = d = n-1;
for (;;) {

while (b <= c && x[b] <= v) {
if (x[b] == v) iswap(a++, b, x);
b++;

}
while (c >= b && x[c] >= v) {

if (x[c] == v) iswap(d--, c, x);
c--;

}
if (b > c) break;
iswap(b++, c--, x);

}
s = min(a, b-a);
for(l = 0, h = b-s; s; s--) iswap(l++, h++, x);
s = min(d-c, n-1-d);
for(l = b, h = n-s; s; s--) iswap(l++, h++, x);
iqsort2(x, b-a);
iqsort2(x + n-(d-c), d-c);

}

Program 6. An integer qsort with split-end partitioning

Quicksort with split-end partitioning (Program 7) is about twice as fast as the Seventh Edi-
tion qsort.

Fat partitioning allows us to alleviate another drawback of Programs 3 and 4. The disor-
der induced by swapping the partition element to the beginning is costly when the input is
ordered in reverse or near-reverse. (Try an example to see why.) Instead of so swapping,
Program 6 copies the partition value to an auxiliary variable, v. When the trick helps, the
speedup can be impressive, sometimes even an order of magnitude. On average, though, it
degrades performance slightly because the partition scan must visit n instead of n −1 ele-
ments. We justify the small loss in average speed—under 2 percent in our final program—
on the same psychological grounds that impelled us to fat partitioning in the first place:
users complain when easy inputs don’t sort quickly.

OTHER IMPROVEMENTS

We now have the ingredients for an efficient qsort: combine split-end partitioning with an
adaptively sampled partitioning element. Program 7 incorporates several additional features
for speed and portability:

1. We use an efficient swap macro and another macro, SWAPINIT, to set up for it; both
are given in the appendix.

2. The macro PVINIT, also given in the appendix, arranges to keep the partition value in
a temporary variable as in Program 6 when it is convenient to do so, otherwise in
a[0] as in Program 4.

1259 J. L. BENTLEY AND M. D. McILROY

3. Although Quicksort is efficient for large arrays, its overhead can be severe for small
arrays. Hence we use the old trick of sorting small subarrays by insertion sort.

4. We guard recursive calls to Quicksort on n elements with the test if (n > 1).
5. Where Program 6 calls the swap function in a loop to bring equal elements to the mid-

dle of the array, we call a new vecswap function. On data with highly repetitive
keys, vecswap saves twenty percent in overall sorting time.

6. Program 7 contains three integer constants (7, 7, 40) for choosing among insertion sort
and various partition methods. Although the values were tuned for our home machine,
the settings appear to be robust. (The range that consists of the single integer 7 could
be eliminated, but has been left adjustable because on some machines larger ranges are
a few percent better.)

7. The VAX object code of the venerable Seventh Edition qsort occupies about 500
bytes, while the Berkeley qsort requires a kilobyte. An early version of our sort
grew to an excessive three kilobytes. With the help of a ‘space profiler’ that displays
the number of bytes devoted to each source line, we beat the code down to a kilobyte.
The largest space reductions came from moving code from macros to functions.

8. While the size_t parameters conform to the prototype in the standard header file
<stdlib.h>, the other parameters do not. Conformance would require more casts.
These type mismatches are usually benign, however, so Program 7 can be used verba-
tim as a library routine on most systems.

We have not adopted many customary improvements. By managing a private stack we
could cut stack space from nearly 20 variables to 2 per level. By sorting the larger side of
the partition last and eliminating tail recursion, we could reduce worst-case stack growth
from linear in n to logarithmic. Neither trick is worth the effort. Since the expected stack
size is logarithmic in n, the stack is likely to be negligible compared to the data—only about
2,000 bytes when n = 1,000,000. In the tests described in the next section, the stack depth
reached three times the minimum possible depth, but no more. Moreover, if worst-case per-
formance is important, Quicksort is the wrong algorithm. (A quick memory fault might
even be preferred to wasting weeks of cycles on a worst-case run.)

There are other well known roads to optimization that we have not traveled.

1. Sedgewick does one big final insertion sort instead of little insertion sorts at the bot-
tom the recursion.7 This replaces several bookkeeping operations by a single compari-
son between array elements. It wins in the MIX cost model but loses in ours.

2. Sentinels at the ends of the array gain speed in the MIX cost model but lose in ours,
and disobey the specification of qsort anyway.

3. Various improvements to insertion sort, including binary search, loop unrolling, and
handling n=2 as a special case, were not helpful. The simplest code was the fastest.

4. More elaborate sampling schemes to choose a partitioning element were less effective
than pseudomedians.

5. We declined to do special-case (#ifdef and register) tuning for particular
machines and compilers,8 though we did see cases where that would win.

CERTIFYING PERFORMANCE

We do well to heed Wirth’s advice: ‘It becomes evident that sorting on the basis of Quick-
sort is somewhat like a gamble in which one should be aware of how much one may afford

ENGINEERING A SORT FUNCTION 1260

to lose if bad luck were to strike.’25 But we would like assurance that our qsort does not
degrade on likely inputs. We therefore emulated Knuth’s approach to testing TeX: ‘I get
into the meanest, nastiest frame of mind that I can manage, and I write the nastiest code I
can think of; then I turn around and embed that in even nastier constructions that are almost
obscene.’26 For the comparatively simple qsort, we are concerned with performance as

void qsort(char *a, size_t n, size_t es, int (*cmp)())
{

char *pa, *pb, *pc, *pd, *pl, *pm, *pn, *pv;
int r, swaptype;
WORD t, v;
size_t s;

SWAPINIT(a, es);
if (n < 7) { /* Insertion sort on smallest arrays */

for (pm = a + es; pm < a + n*es; pm += es)
for (pl = pm; pl > a && cmp(pl-es, pl) > 0; pl -= es)

swap(pl, pl-es);
return;

}
pm = a + (n/2)*es; /* Small arrays, middle element */
if (n > 7) {

pl = a;
pn = a + (n-1)*es;
if (n > 40) { /* Big arrays, pseudomedian of 9 */

s = (n/8)*es;
pl = med3(pl, pl+s, pl+2*s, cmp);
pm = med3(pm-s, pm, pm+s, cmp);
pn = med3(pn-2*s, pn-s, pn, cmp);

}
pm = med3(pl, pm, pn, cmp); /* Mid-size, med of 3 */

}
PVINIT(pv, pm); /* pv points to partition value */
pa = pb = a;
pc = pd = a + (n-1)*es;
for (;;) {

while (pb <= pc && (r = cmp(pb, pv)) <= 0) {
if (r == 0) { swap(pa, pb); pa += es; }
pb += es;

}
while (pc >= pb && (r = cmp(pc, pv)) >= 0) {

if (r == 0) { swap(pc, pd); pd -= es; }
pc -= es;

}
if (pb > pc) break;
swap(pb, pc);
pb += es;
pc -= es;

}
pn = a + n*es;
s = min(pa-a, pb-pa); vecswap(a, pb-s, s);
s = min(pd-pc, pn-pd-es); vecswap(pb, pn-s, s);
if ((s = pb-pa) > es) qsort(a, s/es, es, cmp);
if ((s = pd-pc) > es) qsort(pn-s, s/es, es, cmp);

}

Program 7. The final qsort; see Appendix for macro and type definitions

1261 J. L. BENTLEY AND M. D. McILROY

for n in { 100, 1023, 1024, 1025 }
for (m = 1; m < 2*n; m *= 2)

for dist in { sawtooth, rand, stagger, plateau, shuffle }
for (i = j = 0, k = 1; i < n; i++)

switch (dist)
case sawtooth: x[i] = i % m
case rand: x[i] = rand() % m
case stagger: x[i] = (i*m + i) % n
case plateau: x[i] = min(i, m)
case shuffle: x[i] = rand()%m? (j+=2): (k+=2)

for type in { int, double }
test copy(x) /* work on a copy of x */
test reverse(x, 0, n) /* on a reversed copy */
test reverse(x, 0, n/2) /* front half reversed */
test reverse(x, n/2, n) /* back half reversed */
test sort(x) /* an ordered copy */
test dither(x) /* add i%5 to x[i] */

Figure 1. A qsort certification program in pseudocode

much as with correctness; our certifier produces what Lyness and Kaganove call a ‘perfor-
mance profile.’27 It generates adverse inputs, including all the hard cases we found in the
literature, sorts them, and complains when qsort uses too many comparisons. It tests both
ints and doubles to assess the different treatments of the partition element. The details
are sketched in Figure 1.

Each test in Figure 1 calls qsort with a cmp function that counts the number of com-
parisons and reports cases in which that number exceeds An lg n, where A is typically 1.2. If
the number of comparisons becomes huge (A typically 10), the sort is aborted (with a C
longjmp). Although the program lists only four different values of n, qsort recursively
calls many lesser values of n, which should flush out any bugs lurking near the algorithmic
breakpoints at n = 7 and n = 40. Function test checks answers against a trusted sort; we
found several bugs this way.

The performance test reported the organ-pipe bug in Seventh Edition qsort and discov-
ered the quadratic time for random zeros and ones and several other problems with the
Berkeley code. (For instance, a mod-4 ‘sawtooth’ with its front half reversed ran a factor of
8 slower than expected.)

By contrast, Program 7 proved to be quite robust,† as did Program 4, and (as expected) a
Heapsort and a merge sort. The number of comparisons used by Program 7 exceeded the
warning threshold, 1.2n lg n, in fewer than one percent of the test cases with long-size
keys and fewer than two percent overall. The number never exceeded 1.5n lg n. The most
consistently adverse tests were reversed shuffles of doubles.

COMPARING SORTS

Compared to its two main competitors, the Seventh Edition and Berkeley qsorts, our pro-
gram is pleasantly short, despite its elaborate partition selection method. The central func-
tion comprises only 48 lines of code versus 80 for Seventh Edition and 117 for Berkeley.

hhhhhhhhhhh

† Of course, quadratic behavior is still possible. One can generate fiendish inputs by bugging Quicksort: Con-
sider key values to be unknown initially. In the code for selecting a partition element, assign values in increas-
ing order as unknown keys are encountered. In the partitioning code, make unknown keys compare high.

ENGINEERING A SORT FUNCTION 1262

Table IIii
VAX 8550 MIPS R3000Type 7th Edition Berkeley New 7th Edition Berkeley Newii

integer 1.25 0.80 0.60 0.75 0.41 0.11
float 1.39 0.89 0.70 0.73 0.43 0.14
double 1.78 1.23 0.91 1.33 0.78 0.19
record 3.24 2.01 0.92 3.10 1.75 0.26
pointer 2.48 2.10 1.73 1.09 0.73 0.41
string 3.89 2.82 1.67 3.41 1.83 0.37ii

(Overall counts of noncommentary source, pretty-printed by the Unix cb utility, are 89, 102
and 153 lines respectively.) Our program exhibits none of the quadratic behavior on simple
inputs that afflicts its predecessors.

To assess timing, we ran the programs on computers of disparate architectures: a VAX
8550 and a 40MHz MIPS R3000 (with 64-kilobyte data and instruction caches and a sec-
ondary cache of one megabyte), compiling with lcc on both. Table II reports times in sec-
onds to sort 10,000 integers chosen randomly from the range 0 to 999,999 on each of the
testbed’s six input types. Each time is the average of ten runs. On both machines, our
qsort is strictly faster than the Berkeley function, which is in turn faster than the Seventh
Edition function. But how much faster? The running-time improvements vary with both
machine and data type, from twenty percent to a factor of twelve. (The biggest factors are
due largely to better swapping, as described in the appendix). In any event, the new code
represents enough of an improvement to have been adopted in our own lab and by Berkeley.

We considered qsort implementations that were not based on Quicksort. P. McIlroy’s
merge sort has guaranteed O (n log n) worst-case performance and is almost optimally
adaptive to data with residual order (it runs the highly nonrandom certification suite of Fig-
ure 1 almost twice as fast as Program 7), but requires O (n) additional memory.21 An
ancient but little known modification of Heapsort due to Floyd uses n lg n + O (n) compar-
isons, but requires almost that many swaps, four times as many as Quicksort.5 While these
algorithms beat our qsort in some contexts and lose in others, on balance our function
remains the general qsort implementation of choice.

To illustrate the cost of the general qsort interface, and the benefits of the optimizations
in Program 7, we specialized it in two ways. The first specialization sorts only pointer-sized
objects, thus eliminating the parameter es and reducing the cost of swaps. A further spe-
cialization sorts only integers, thus eliminating parameter cmp and the overhead of calling
it. Table III compares these specializations and the basic Program 3 in sorting 100,000 ran-
dom integers. For the conventional VAX, the only useful specialization is eliminating the
overhead of calling cmp. For the highly pipelined MIPS, the more useful specialization is
simplifying the swap code, which eliminates a conditional branch. Relative to the simple
Program 3, the improvements in Program 7 (med3 and vecswap) pay off modestly. This
is not surprising, as the improvements were intended to retain efficiency in the face of non-
random inputs and inputs where comparison is expensive. Random integers make no such
demands.

Stylistically, Program 7 has more variables and depends more heavily on macros than we
might like. Observing this, Ken Thompson extended Program 4 in a simpler direction that
gives highly consistent performance. Thompson’s program uses median-of-three partition-
ing, an inner procedure with function parameters for both swapping and comparison, and
iteration instead of tail recursion. It compiles into half the space of Program 7 and runs only
a few percent slower on average. On low-entropy inputs, however, Program 7 often beats it

1263 J. L. BENTLEY AND M. D. McILROY

Table IIIiii
CPU SecondsSort VAX 8550 MIPS R3000iii

General qsort, Program 7 7.24 2.02
Specialized to es==sizeof(char*) 7.28 1.74
Specialized to ints 3.49 1.63

Basic integer Quicksort, Program 3 4.40 1.77iii

dramatically. (Comparison counts summed over the certification suite of Figure 1 differed
by a factor of 1.5.) Herein lies justification for the complications in Program 7.

CONCLUSIONS

We have added a few new tricks to Quicksort’s bag: an adaptive sampling scheme for
choosing a partition element, a new partitioning algorithm, fast swapping code, and a more
appropriate cost model. We mixed these with a few old tricks, ignored many others, and
arrived at the champion Program 7. Many of these techniques apply immediately to other
sorting and selection algorithms. The history of the algorithm illustrates lessons that apply
well beyond sorting:

Simplicity. The key to performance is elegance, not battalions of special cases. The terri-
ble temptation to tweak should be resisted unless the payoff is really noticeable.

Profiling Tools. A function-time profiler tells us where the CPU cycles go, and a line-
count profiler tells us why. A cost model gives us ballpark estimates for key operations.
We sometimes used an algorithm animation system to make movies of sort functions.4

Testbeds for Timing and Debugging. A tiny driver gives us one glimpse of the program; a
more complex testbed exercises it in more interesting ways. The testbeds check correctness,
count comparisons and measure CPU times.

Testing and Certification. The correctness and performance of key routines should be val-
idated by certification programs.

ACKNOWLEDGEMENTS
We are grateful for helpful input from Daniel Carrai, Ken Clarkson, Steve Fortune, Chris

Fraser, Eric Grosse, Dave Hanson, Andrew Hume, David Johnson, Brian Kernighan, John
Linderman, Peter McIlroy, Bob Sedgewick, Ken Thompson, Howard Trickey and Peter
Weinberger.

APPENDIX: TUNING THE SWAP FUNCTION

Among all tuning issues, swapping is the most sensitive to differences in hardware and com-
pilers. Table IV shows how widely swapping can vary. The first entry gives times for
swapping 4-byte words in line; the other entries give times for subroutines that swap byte
strings word-wise and byte-wise. The VAX world is predictable: an inline swap is fastest,
and after function call overhead is subtracted, swappint by chars take about four times as
long as swapping by longs. On the MIPS machine, however, the time ratio is about 15.
One factor of four is the size ratio of long to char, and a second factor of almost four is

ENGINEERING A SORT FUNCTION 1264

Table IViiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CPU MicrosecondsSwap VAX 8550 MIPS R3000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Inline long 0.8 0.6
4 bytes, long 4.9 1.5
4 bytes, char 7.9 14.5
40 bytes, long 16.2 6.5
40 bytes, char 66.9 106.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

due to cache interference from writing a byte into the word to be read next. Since the
Seventh Edition and Berkeley qsorts always swap char-wise, they are quite slow on this
machine.

Table IV leads us to prefer in-line swaps and swapping by word-sized chunks. Thus, for
the important special case of word-sized objects (typically pointers or integers) we swap in
line. For more complicated swaps, we call a function, swapfunc, which in turn distin-
guishes objects that occupy an exact number of properly aligned words. We have chosen
long as a generally appropriate word size. The kind of swapping is given by a variable,
swaptype, with value 0 for single-word swaps, 1 for general swapping by words, and 2
for swapping by bytes. The variable is set by a macro, SWAPINIT:†

typedef long WORD;
#define W sizeof(WORD) /* must be a power of 2 */
#define SWAPINIT(a, es) swaptype = \

(a-(char*)0 | es) % W ? 2 : es > W ? 1 : 0

The swap function becomes a macro that chooses between a function call and an in-line
exchange.

#define exch(a, b, t) (t = a, a = b, b = t)
#define swap(a, b) \

swaptype != 0 ? swapfunc(a, b, es, swaptype) : \
(void)exch(*(WORD*)(a), *(WORD*)(b), t)

Another macro swaps sequences of records.

#define vecswap(a, b, n) if (n > 0) swapfunc(a, b, n, swaptype)

The function called by these macros is straightforward.

#include <stddef.h>
static void swapfunc(char *a, char *b, size_t n, int swaptype)
{

if (swaptype <= 1) {
WORD t;
for(; n > 0; a += W, b += W, n -= W)

exch(*(WORD*)a, *(WORD*)b, t);
} else {

char t;
for(; n > 0; a += 1, b += 1, n -= 1)

exch(*a, *b, t);
}

}
hhhhhhhhhhh

† The strange formula to check data size and alignment works even on Cray computers, where plausible code
such as ((long)a | es) % sizeof(long) fails because the least significant part of a byte address occupies
the most significant part of a long.

1265 J. L. BENTLEY AND M. D. McILROY

As explained in ‘The Opportunity of Equal Elements’, we prefer to store the partition
value out of line instead of swapping it to position a[0]. This improvement is inconven-
ient in C unless the element size is fixed, so we adopt it only for the important special case
of word-size objects. Variable pv is made to point to a[0] or to an out-of-line variable v,
whichever is used. This macro does the setup:

#define PVINIT(pv, pm) \
if (swaptype != 0) pv = a, swap(pv, pm); \
else pv = (char*)&v, v = *(WORD*)pm

REFERENCES
1. C. A. R. Hoare, ‘Quicksort’, Computer Journal, 5, 10-15 (1962).
2. R. S. Scowen, ‘Algorithm 271: quickersort’, Communications of the ACM, 8, 669-670 (1965).
3. B. W. Kernighan and M. D. McIlroy (eds), UNIX Programmer’s Manual, 7th Edition, Bell Telephone Lab-

oratories, Murray Hill, NJ (1979). Republished by Holt, Rinehart and Winston, 1983.
4. J. L. Bentley, ‘Software exploratorium: the trouble with qsort’, UNIX Review, 10, (2), 85-93 (1992).
5. J. L. Bentley, ‘Software exploratorium: history of a heapsort’, UNIX Review, 10, (8), 71-77 (1992).
6. American National Standards Institute, American National Standard for Information Systems — Program-

ming Language — C, ANSI X3.159-1989, New York (1979).
7. R. Sedgewick, ‘Quicksort’, PhD Thesis, Stanford University (1975).
8. R. Sedgewick, ‘Implementing quicksort programs’, Communications of the ACM, 21, 847-857 (1978).
9. R. Sedgewick, ‘Quicksort with equal keys’, SIAM J. Comp, 6, 240-267 (1977).

10. R. Sedgewick, ‘The analysis of quicksort programs’, Acta Informatica, 7, 327-355 (1977).
11. R. Sedgewick, Algorithms in C, Addison-Wesley, Reading, MA (1990).
12. D. E. Knuth, The Art of Computer Programming, volume 3: Sorting and Searching, Addison-Wesley,

Reading, MA (1975).
13. R. L. Rivest and D. E. Knuth, ‘Bibliography 26: computer sorting’, Computing Reviews, 13, 283-289

(1972).
14. J. L. Bentley, Programming Pearls, Addison-Wesley, Reading, MA (1986).
15. D. E. Knuth, ‘Structured programming with goto statements’, Computing Surveys, 6, 261-301 (1974).
16. J. L. Bentley, B. W. Kernighan, and C. J. Van Wyk, ‘An elementary C cost model’, UNIX Review, 9, (2),

38-48 (1991).
17. C. W. Fraser and D. R. Hanson, ‘A retargetable compiler for ANSI C’, ACM SIGPLAN Notices, 26, (10),

29-43 (1991).
18. J. P. Linderman, ‘Theory and practice in the construction of a working sort routine’, Bell System Technical

Journal, 63, 1827-1843 (1984).
19. R. C. Singleton, ‘Algorithm 347: an efficient algorithm for sorting with minimal storage’, Communications

of the ACM, 12, 185-187 (1969).
20. B. W. Weide, ‘Space-efficient on-line selection algorithms’, Computer Science and Statistics: Eleventh

Annual Symposium on the Interface, (1978), pp. 308-312.
21. P. McIlroy, ‘Optimistic sorting and information theoretic complexity’, Proceedings of the Fourth Annual

ACM-SIAM Symposium on Discrete Algorithms, Austin, (1993), pp. 467-474.
22. O. Petersson and A. Moffat, ‘A framework for adaptive sorting’, Proc. Third Scandinavian Workshop on

Algorithms and Theory, O. Nurmi and E. Ukkonen (eds), Springer-Verlag Lecture Notes in Comp. Sci.
#621, (1992), pp. 422-433.

23. E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ (1976).
24. L. M. Wegner, ‘Quicksort for equal keys’, IEEE Transactions on Computers, C-34, 362-367 (1985).
25. N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Englewood Cliffs, NJ (1976).
26. D. E. Knuth, ‘The errors of Tex’, Software—Practice and Experience, 19, 607-685 (1989).
27. J. N. Lyness and J. J. Kaganove, ‘Comments on the nature of automatic quadrature routines’, ACM Trans-

actions on Mathematical Software, 2, 65-81 (1976).

	SUMMARY
	INTRODUCTION
	THE QSORT INTERFACE
	A SIMPLE QSORT
	A COST MODEL
	CHOOSING A PARTITIONING ELEMENT
	A TIMING TESTBED
	THE OPPORTUNITY OF EQUAL ELEMENTS
	OTHER IMPROVEMENTS
	CERTIFYING PERFORMANCE
	COMPARING SORTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	APPENDIX: TUNING THE SWAP FUNCTION
	REFERENCES

