The data contained in this repository can be downloaded to your computer using one of several clients.
Please see the documentation of your version control software client for more information.

Please select the desired protocol below to get the URL.

This URL has Read-Only access.

Statistics
| Branch: | Revision:

main_repo / deps / v8 / benchmarks / deltablue.js @ f230a1cf

History | View | Annotate | Download (25.1 KB)

1
// Copyright 2008 the V8 project authors. All rights reserved.
2
// Copyright 1996 John Maloney and Mario Wolczko.
3

    
4
// This program is free software; you can redistribute it and/or modify
5
// it under the terms of the GNU General Public License as published by
6
// the Free Software Foundation; either version 2 of the License, or
7
// (at your option) any later version.
8
//
9
// This program is distributed in the hope that it will be useful,
10
// but WITHOUT ANY WARRANTY; without even the implied warranty of
11
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
// GNU General Public License for more details.
13
//
14
// You should have received a copy of the GNU General Public License
15
// along with this program; if not, write to the Free Software
16
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17

    
18

    
19
// This implementation of the DeltaBlue benchmark is derived
20
// from the Smalltalk implementation by John Maloney and Mario
21
// Wolczko. Some parts have been translated directly, whereas
22
// others have been modified more aggresively to make it feel
23
// more like a JavaScript program.
24

    
25

    
26
var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [
27
  new Benchmark('DeltaBlue', deltaBlue)
28
]);
29

    
30

    
31
/**
32
 * A JavaScript implementation of the DeltaBlue constraint-solving
33
 * algorithm, as described in:
34
 *
35
 * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
36
 *   Bjorn N. Freeman-Benson and John Maloney
37
 *   January 1990 Communications of the ACM,
38
 *   also available as University of Washington TR 89-08-06.
39
 *
40
 * Beware: this benchmark is written in a grotesque style where
41
 * the constraint model is built by side-effects from constructors.
42
 * I've kept it this way to avoid deviating too much from the original
43
 * implementation.
44
 */
45

    
46

    
47
/* --- O b j e c t   M o d e l --- */
48

    
49
Object.prototype.inheritsFrom = function (shuper) {
50
  function Inheriter() { }
51
  Inheriter.prototype = shuper.prototype;
52
  this.prototype = new Inheriter();
53
  this.superConstructor = shuper;
54
}
55

    
56
function OrderedCollection() {
57
  this.elms = new Array();
58
}
59

    
60
OrderedCollection.prototype.add = function (elm) {
61
  this.elms.push(elm);
62
}
63

    
64
OrderedCollection.prototype.at = function (index) {
65
  return this.elms[index];
66
}
67

    
68
OrderedCollection.prototype.size = function () {
69
  return this.elms.length;
70
}
71

    
72
OrderedCollection.prototype.removeFirst = function () {
73
  return this.elms.pop();
74
}
75

    
76
OrderedCollection.prototype.remove = function (elm) {
77
  var index = 0, skipped = 0;
78
  for (var i = 0; i < this.elms.length; i++) {
79
    var value = this.elms[i];
80
    if (value != elm) {
81
      this.elms[index] = value;
82
      index++;
83
    } else {
84
      skipped++;
85
    }
86
  }
87
  for (var i = 0; i < skipped; i++)
88
    this.elms.pop();
89
}
90

    
91
/* --- *
92
 * S t r e n g t h
93
 * --- */
94

    
95
/**
96
 * Strengths are used to measure the relative importance of constraints.
97
 * New strengths may be inserted in the strength hierarchy without
98
 * disrupting current constraints.  Strengths cannot be created outside
99
 * this class, so pointer comparison can be used for value comparison.
100
 */
101
function Strength(strengthValue, name) {
102
  this.strengthValue = strengthValue;
103
  this.name = name;
104
}
105

    
106
Strength.stronger = function (s1, s2) {
107
  return s1.strengthValue < s2.strengthValue;
108
}
109

    
110
Strength.weaker = function (s1, s2) {
111
  return s1.strengthValue > s2.strengthValue;
112
}
113

    
114
Strength.weakestOf = function (s1, s2) {
115
  return this.weaker(s1, s2) ? s1 : s2;
116
}
117

    
118
Strength.strongest = function (s1, s2) {
119
  return this.stronger(s1, s2) ? s1 : s2;
120
}
121

    
122
Strength.prototype.nextWeaker = function () {
123
  switch (this.strengthValue) {
124
    case 0: return Strength.STRONG_PREFERRED;
125
    case 1: return Strength.PREFERRED;
126
    case 2: return Strength.STRONG_DEFAULT;
127
    case 3: return Strength.NORMAL;
128
    case 4: return Strength.WEAK_DEFAULT;
129
    case 5: return Strength.WEAKEST;
130
  }
131
}
132

    
133
// Strength constants.
134
Strength.REQUIRED         = new Strength(0, "required");
135
Strength.STRONG_PREFERRED = new Strength(1, "strongPreferred");
136
Strength.PREFERRED        = new Strength(2, "preferred");
137
Strength.STRONG_DEFAULT   = new Strength(3, "strongDefault");
138
Strength.NORMAL           = new Strength(4, "normal");
139
Strength.WEAK_DEFAULT     = new Strength(5, "weakDefault");
140
Strength.WEAKEST          = new Strength(6, "weakest");
141

    
142
/* --- *
143
 * C o n s t r a i n t
144
 * --- */
145

    
146
/**
147
 * An abstract class representing a system-maintainable relationship
148
 * (or "constraint") between a set of variables. A constraint supplies
149
 * a strength instance variable; concrete subclasses provide a means
150
 * of storing the constrained variables and other information required
151
 * to represent a constraint.
152
 */
153
function Constraint(strength) {
154
  this.strength = strength;
155
}
156

    
157
/**
158
 * Activate this constraint and attempt to satisfy it.
159
 */
160
Constraint.prototype.addConstraint = function () {
161
  this.addToGraph();
162
  planner.incrementalAdd(this);
163
}
164

    
165
/**
166
 * Attempt to find a way to enforce this constraint. If successful,
167
 * record the solution, perhaps modifying the current dataflow
168
 * graph. Answer the constraint that this constraint overrides, if
169
 * there is one, or nil, if there isn't.
170
 * Assume: I am not already satisfied.
171
 */
172
Constraint.prototype.satisfy = function (mark) {
173
  this.chooseMethod(mark);
174
  if (!this.isSatisfied()) {
175
    if (this.strength == Strength.REQUIRED)
176
      alert("Could not satisfy a required constraint!");
177
    return null;
178
  }
179
  this.markInputs(mark);
180
  var out = this.output();
181
  var overridden = out.determinedBy;
182
  if (overridden != null) overridden.markUnsatisfied();
183
  out.determinedBy = this;
184
  if (!planner.addPropagate(this, mark))
185
    alert("Cycle encountered");
186
  out.mark = mark;
187
  return overridden;
188
}
189

    
190
Constraint.prototype.destroyConstraint = function () {
191
  if (this.isSatisfied()) planner.incrementalRemove(this);
192
  else this.removeFromGraph();
193
}
194

    
195
/**
196
 * Normal constraints are not input constraints.  An input constraint
197
 * is one that depends on external state, such as the mouse, the
198
 * keybord, a clock, or some arbitraty piece of imperative code.
199
 */
200
Constraint.prototype.isInput = function () {
201
  return false;
202
}
203

    
204
/* --- *
205
 * U n a r y   C o n s t r a i n t
206
 * --- */
207

    
208
/**
209
 * Abstract superclass for constraints having a single possible output
210
 * variable.
211
 */
212
function UnaryConstraint(v, strength) {
213
  UnaryConstraint.superConstructor.call(this, strength);
214
  this.myOutput = v;
215
  this.satisfied = false;
216
  this.addConstraint();
217
}
218

    
219
UnaryConstraint.inheritsFrom(Constraint);
220

    
221
/**
222
 * Adds this constraint to the constraint graph
223
 */
224
UnaryConstraint.prototype.addToGraph = function () {
225
  this.myOutput.addConstraint(this);
226
  this.satisfied = false;
227
}
228

    
229
/**
230
 * Decides if this constraint can be satisfied and records that
231
 * decision.
232
 */
233
UnaryConstraint.prototype.chooseMethod = function (mark) {
234
  this.satisfied = (this.myOutput.mark != mark)
235
    && Strength.stronger(this.strength, this.myOutput.walkStrength);
236
}
237

    
238
/**
239
 * Returns true if this constraint is satisfied in the current solution.
240
 */
241
UnaryConstraint.prototype.isSatisfied = function () {
242
  return this.satisfied;
243
}
244

    
245
UnaryConstraint.prototype.markInputs = function (mark) {
246
  // has no inputs
247
}
248

    
249
/**
250
 * Returns the current output variable.
251
 */
252
UnaryConstraint.prototype.output = function () {
253
  return this.myOutput;
254
}
255

    
256
/**
257
 * Calculate the walkabout strength, the stay flag, and, if it is
258
 * 'stay', the value for the current output of this constraint. Assume
259
 * this constraint is satisfied.
260
 */
261
UnaryConstraint.prototype.recalculate = function () {
262
  this.myOutput.walkStrength = this.strength;
263
  this.myOutput.stay = !this.isInput();
264
  if (this.myOutput.stay) this.execute(); // Stay optimization
265
}
266

    
267
/**
268
 * Records that this constraint is unsatisfied
269
 */
270
UnaryConstraint.prototype.markUnsatisfied = function () {
271
  this.satisfied = false;
272
}
273

    
274
UnaryConstraint.prototype.inputsKnown = function () {
275
  return true;
276
}
277

    
278
UnaryConstraint.prototype.removeFromGraph = function () {
279
  if (this.myOutput != null) this.myOutput.removeConstraint(this);
280
  this.satisfied = false;
281
}
282

    
283
/* --- *
284
 * S t a y   C o n s t r a i n t
285
 * --- */
286

    
287
/**
288
 * Variables that should, with some level of preference, stay the same.
289
 * Planners may exploit the fact that instances, if satisfied, will not
290
 * change their output during plan execution.  This is called "stay
291
 * optimization".
292
 */
293
function StayConstraint(v, str) {
294
  StayConstraint.superConstructor.call(this, v, str);
295
}
296

    
297
StayConstraint.inheritsFrom(UnaryConstraint);
298

    
299
StayConstraint.prototype.execute = function () {
300
  // Stay constraints do nothing
301
}
302

    
303
/* --- *
304
 * E d i t   C o n s t r a i n t
305
 * --- */
306

    
307
/**
308
 * A unary input constraint used to mark a variable that the client
309
 * wishes to change.
310
 */
311
function EditConstraint(v, str) {
312
  EditConstraint.superConstructor.call(this, v, str);
313
}
314

    
315
EditConstraint.inheritsFrom(UnaryConstraint);
316

    
317
/**
318
 * Edits indicate that a variable is to be changed by imperative code.
319
 */
320
EditConstraint.prototype.isInput = function () {
321
  return true;
322
}
323

    
324
EditConstraint.prototype.execute = function () {
325
  // Edit constraints do nothing
326
}
327

    
328
/* --- *
329
 * B i n a r y   C o n s t r a i n t
330
 * --- */
331

    
332
var Direction = new Object();
333
Direction.NONE     = 0;
334
Direction.FORWARD  = 1;
335
Direction.BACKWARD = -1;
336

    
337
/**
338
 * Abstract superclass for constraints having two possible output
339
 * variables.
340
 */
341
function BinaryConstraint(var1, var2, strength) {
342
  BinaryConstraint.superConstructor.call(this, strength);
343
  this.v1 = var1;
344
  this.v2 = var2;
345
  this.direction = Direction.NONE;
346
  this.addConstraint();
347
}
348

    
349
BinaryConstraint.inheritsFrom(Constraint);
350

    
351
/**
352
 * Decides if this constraint can be satisfied and which way it
353
 * should flow based on the relative strength of the variables related,
354
 * and record that decision.
355
 */
356
BinaryConstraint.prototype.chooseMethod = function (mark) {
357
  if (this.v1.mark == mark) {
358
    this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
359
      ? Direction.FORWARD
360
      : Direction.NONE;
361
  }
362
  if (this.v2.mark == mark) {
363
    this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
364
      ? Direction.BACKWARD
365
      : Direction.NONE;
366
  }
367
  if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
368
    this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
369
      ? Direction.BACKWARD
370
      : Direction.NONE;
371
  } else {
372
    this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
373
      ? Direction.FORWARD
374
      : Direction.BACKWARD
375
  }
376
}
377

    
378
/**
379
 * Add this constraint to the constraint graph
380
 */
381
BinaryConstraint.prototype.addToGraph = function () {
382
  this.v1.addConstraint(this);
383
  this.v2.addConstraint(this);
384
  this.direction = Direction.NONE;
385
}
386

    
387
/**
388
 * Answer true if this constraint is satisfied in the current solution.
389
 */
390
BinaryConstraint.prototype.isSatisfied = function () {
391
  return this.direction != Direction.NONE;
392
}
393

    
394
/**
395
 * Mark the input variable with the given mark.
396
 */
397
BinaryConstraint.prototype.markInputs = function (mark) {
398
  this.input().mark = mark;
399
}
400

    
401
/**
402
 * Returns the current input variable
403
 */
404
BinaryConstraint.prototype.input = function () {
405
  return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
406
}
407

    
408
/**
409
 * Returns the current output variable
410
 */
411
BinaryConstraint.prototype.output = function () {
412
  return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
413
}
414

    
415
/**
416
 * Calculate the walkabout strength, the stay flag, and, if it is
417
 * 'stay', the value for the current output of this
418
 * constraint. Assume this constraint is satisfied.
419
 */
420
BinaryConstraint.prototype.recalculate = function () {
421
  var ihn = this.input(), out = this.output();
422
  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
423
  out.stay = ihn.stay;
424
  if (out.stay) this.execute();
425
}
426

    
427
/**
428
 * Record the fact that this constraint is unsatisfied.
429
 */
430
BinaryConstraint.prototype.markUnsatisfied = function () {
431
  this.direction = Direction.NONE;
432
}
433

    
434
BinaryConstraint.prototype.inputsKnown = function (mark) {
435
  var i = this.input();
436
  return i.mark == mark || i.stay || i.determinedBy == null;
437
}
438

    
439
BinaryConstraint.prototype.removeFromGraph = function () {
440
  if (this.v1 != null) this.v1.removeConstraint(this);
441
  if (this.v2 != null) this.v2.removeConstraint(this);
442
  this.direction = Direction.NONE;
443
}
444

    
445
/* --- *
446
 * S c a l e   C o n s t r a i n t
447
 * --- */
448

    
449
/**
450
 * Relates two variables by the linear scaling relationship: "v2 =
451
 * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
452
 * this relationship but the scale factor and offset are considered
453
 * read-only.
454
 */
455
function ScaleConstraint(src, scale, offset, dest, strength) {
456
  this.direction = Direction.NONE;
457
  this.scale = scale;
458
  this.offset = offset;
459
  ScaleConstraint.superConstructor.call(this, src, dest, strength);
460
}
461

    
462
ScaleConstraint.inheritsFrom(BinaryConstraint);
463

    
464
/**
465
 * Adds this constraint to the constraint graph.
466
 */
467
ScaleConstraint.prototype.addToGraph = function () {
468
  ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
469
  this.scale.addConstraint(this);
470
  this.offset.addConstraint(this);
471
}
472

    
473
ScaleConstraint.prototype.removeFromGraph = function () {
474
  ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
475
  if (this.scale != null) this.scale.removeConstraint(this);
476
  if (this.offset != null) this.offset.removeConstraint(this);
477
}
478

    
479
ScaleConstraint.prototype.markInputs = function (mark) {
480
  ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
481
  this.scale.mark = this.offset.mark = mark;
482
}
483

    
484
/**
485
 * Enforce this constraint. Assume that it is satisfied.
486
 */
487
ScaleConstraint.prototype.execute = function () {
488
  if (this.direction == Direction.FORWARD) {
489
    this.v2.value = this.v1.value * this.scale.value + this.offset.value;
490
  } else {
491
    this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
492
  }
493
}
494

    
495
/**
496
 * Calculate the walkabout strength, the stay flag, and, if it is
497
 * 'stay', the value for the current output of this constraint. Assume
498
 * this constraint is satisfied.
499
 */
500
ScaleConstraint.prototype.recalculate = function () {
501
  var ihn = this.input(), out = this.output();
502
  out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
503
  out.stay = ihn.stay && this.scale.stay && this.offset.stay;
504
  if (out.stay) this.execute();
505
}
506

    
507
/* --- *
508
 * E q u a l i t  y   C o n s t r a i n t
509
 * --- */
510

    
511
/**
512
 * Constrains two variables to have the same value.
513
 */
514
function EqualityConstraint(var1, var2, strength) {
515
  EqualityConstraint.superConstructor.call(this, var1, var2, strength);
516
}
517

    
518
EqualityConstraint.inheritsFrom(BinaryConstraint);
519

    
520
/**
521
 * Enforce this constraint. Assume that it is satisfied.
522
 */
523
EqualityConstraint.prototype.execute = function () {
524
  this.output().value = this.input().value;
525
}
526

    
527
/* --- *
528
 * V a r i a b l e
529
 * --- */
530

    
531
/**
532
 * A constrained variable. In addition to its value, it maintain the
533
 * structure of the constraint graph, the current dataflow graph, and
534
 * various parameters of interest to the DeltaBlue incremental
535
 * constraint solver.
536
 **/
537
function Variable(name, initialValue) {
538
  this.value = initialValue || 0;
539
  this.constraints = new OrderedCollection();
540
  this.determinedBy = null;
541
  this.mark = 0;
542
  this.walkStrength = Strength.WEAKEST;
543
  this.stay = true;
544
  this.name = name;
545
}
546

    
547
/**
548
 * Add the given constraint to the set of all constraints that refer
549
 * this variable.
550
 */
551
Variable.prototype.addConstraint = function (c) {
552
  this.constraints.add(c);
553
}
554

    
555
/**
556
 * Removes all traces of c from this variable.
557
 */
558
Variable.prototype.removeConstraint = function (c) {
559
  this.constraints.remove(c);
560
  if (this.determinedBy == c) this.determinedBy = null;
561
}
562

    
563
/* --- *
564
 * P l a n n e r
565
 * --- */
566

    
567
/**
568
 * The DeltaBlue planner
569
 */
570
function Planner() {
571
  this.currentMark = 0;
572
}
573

    
574
/**
575
 * Attempt to satisfy the given constraint and, if successful,
576
 * incrementally update the dataflow graph.  Details: If satifying
577
 * the constraint is successful, it may override a weaker constraint
578
 * on its output. The algorithm attempts to resatisfy that
579
 * constraint using some other method. This process is repeated
580
 * until either a) it reaches a variable that was not previously
581
 * determined by any constraint or b) it reaches a constraint that
582
 * is too weak to be satisfied using any of its methods. The
583
 * variables of constraints that have been processed are marked with
584
 * a unique mark value so that we know where we've been. This allows
585
 * the algorithm to avoid getting into an infinite loop even if the
586
 * constraint graph has an inadvertent cycle.
587
 */
588
Planner.prototype.incrementalAdd = function (c) {
589
  var mark = this.newMark();
590
  var overridden = c.satisfy(mark);
591
  while (overridden != null)
592
    overridden = overridden.satisfy(mark);
593
}
594

    
595
/**
596
 * Entry point for retracting a constraint. Remove the given
597
 * constraint and incrementally update the dataflow graph.
598
 * Details: Retracting the given constraint may allow some currently
599
 * unsatisfiable downstream constraint to be satisfied. We therefore collect
600
 * a list of unsatisfied downstream constraints and attempt to
601
 * satisfy each one in turn. This list is traversed by constraint
602
 * strength, strongest first, as a heuristic for avoiding
603
 * unnecessarily adding and then overriding weak constraints.
604
 * Assume: c is satisfied.
605
 */
606
Planner.prototype.incrementalRemove = function (c) {
607
  var out = c.output();
608
  c.markUnsatisfied();
609
  c.removeFromGraph();
610
  var unsatisfied = this.removePropagateFrom(out);
611
  var strength = Strength.REQUIRED;
612
  do {
613
    for (var i = 0; i < unsatisfied.size(); i++) {
614
      var u = unsatisfied.at(i);
615
      if (u.strength == strength)
616
        this.incrementalAdd(u);
617
    }
618
    strength = strength.nextWeaker();
619
  } while (strength != Strength.WEAKEST);
620
}
621

    
622
/**
623
 * Select a previously unused mark value.
624
 */
625
Planner.prototype.newMark = function () {
626
  return ++this.currentMark;
627
}
628

    
629
/**
630
 * Extract a plan for resatisfaction starting from the given source
631
 * constraints, usually a set of input constraints. This method
632
 * assumes that stay optimization is desired; the plan will contain
633
 * only constraints whose output variables are not stay. Constraints
634
 * that do no computation, such as stay and edit constraints, are
635
 * not included in the plan.
636
 * Details: The outputs of a constraint are marked when it is added
637
 * to the plan under construction. A constraint may be appended to
638
 * the plan when all its input variables are known. A variable is
639
 * known if either a) the variable is marked (indicating that has
640
 * been computed by a constraint appearing earlier in the plan), b)
641
 * the variable is 'stay' (i.e. it is a constant at plan execution
642
 * time), or c) the variable is not determined by any
643
 * constraint. The last provision is for past states of history
644
 * variables, which are not stay but which are also not computed by
645
 * any constraint.
646
 * Assume: sources are all satisfied.
647
 */
648
Planner.prototype.makePlan = function (sources) {
649
  var mark = this.newMark();
650
  var plan = new Plan();
651
  var todo = sources;
652
  while (todo.size() > 0) {
653
    var c = todo.removeFirst();
654
    if (c.output().mark != mark && c.inputsKnown(mark)) {
655
      plan.addConstraint(c);
656
      c.output().mark = mark;
657
      this.addConstraintsConsumingTo(c.output(), todo);
658
    }
659
  }
660
  return plan;
661
}
662

    
663
/**
664
 * Extract a plan for resatisfying starting from the output of the
665
 * given constraints, usually a set of input constraints.
666
 */
667
Planner.prototype.extractPlanFromConstraints = function (constraints) {
668
  var sources = new OrderedCollection();
669
  for (var i = 0; i < constraints.size(); i++) {
670
    var c = constraints.at(i);
671
    if (c.isInput() && c.isSatisfied())
672
      // not in plan already and eligible for inclusion
673
      sources.add(c);
674
  }
675
  return this.makePlan(sources);
676
}
677

    
678
/**
679
 * Recompute the walkabout strengths and stay flags of all variables
680
 * downstream of the given constraint and recompute the actual
681
 * values of all variables whose stay flag is true. If a cycle is
682
 * detected, remove the given constraint and answer
683
 * false. Otherwise, answer true.
684
 * Details: Cycles are detected when a marked variable is
685
 * encountered downstream of the given constraint. The sender is
686
 * assumed to have marked the inputs of the given constraint with
687
 * the given mark. Thus, encountering a marked node downstream of
688
 * the output constraint means that there is a path from the
689
 * constraint's output to one of its inputs.
690
 */
691
Planner.prototype.addPropagate = function (c, mark) {
692
  var todo = new OrderedCollection();
693
  todo.add(c);
694
  while (todo.size() > 0) {
695
    var d = todo.removeFirst();
696
    if (d.output().mark == mark) {
697
      this.incrementalRemove(c);
698
      return false;
699
    }
700
    d.recalculate();
701
    this.addConstraintsConsumingTo(d.output(), todo);
702
  }
703
  return true;
704
}
705

    
706

    
707
/**
708
 * Update the walkabout strengths and stay flags of all variables
709
 * downstream of the given constraint. Answer a collection of
710
 * unsatisfied constraints sorted in order of decreasing strength.
711
 */
712
Planner.prototype.removePropagateFrom = function (out) {
713
  out.determinedBy = null;
714
  out.walkStrength = Strength.WEAKEST;
715
  out.stay = true;
716
  var unsatisfied = new OrderedCollection();
717
  var todo = new OrderedCollection();
718
  todo.add(out);
719
  while (todo.size() > 0) {
720
    var v = todo.removeFirst();
721
    for (var i = 0; i < v.constraints.size(); i++) {
722
      var c = v.constraints.at(i);
723
      if (!c.isSatisfied())
724
        unsatisfied.add(c);
725
    }
726
    var determining = v.determinedBy;
727
    for (var i = 0; i < v.constraints.size(); i++) {
728
      var next = v.constraints.at(i);
729
      if (next != determining && next.isSatisfied()) {
730
        next.recalculate();
731
        todo.add(next.output());
732
      }
733
    }
734
  }
735
  return unsatisfied;
736
}
737

    
738
Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
739
  var determining = v.determinedBy;
740
  var cc = v.constraints;
741
  for (var i = 0; i < cc.size(); i++) {
742
    var c = cc.at(i);
743
    if (c != determining && c.isSatisfied())
744
      coll.add(c);
745
  }
746
}
747

    
748
/* --- *
749
 * P l a n
750
 * --- */
751

    
752
/**
753
 * A Plan is an ordered list of constraints to be executed in sequence
754
 * to resatisfy all currently satisfiable constraints in the face of
755
 * one or more changing inputs.
756
 */
757
function Plan() {
758
  this.v = new OrderedCollection();
759
}
760

    
761
Plan.prototype.addConstraint = function (c) {
762
  this.v.add(c);
763
}
764

    
765
Plan.prototype.size = function () {
766
  return this.v.size();
767
}
768

    
769
Plan.prototype.constraintAt = function (index) {
770
  return this.v.at(index);
771
}
772

    
773
Plan.prototype.execute = function () {
774
  for (var i = 0; i < this.size(); i++) {
775
    var c = this.constraintAt(i);
776
    c.execute();
777
  }
778
}
779

    
780
/* --- *
781
 * M a i n
782
 * --- */
783

    
784
/**
785
 * This is the standard DeltaBlue benchmark. A long chain of equality
786
 * constraints is constructed with a stay constraint on one end. An
787
 * edit constraint is then added to the opposite end and the time is
788
 * measured for adding and removing this constraint, and extracting
789
 * and executing a constraint satisfaction plan. There are two cases.
790
 * In case 1, the added constraint is stronger than the stay
791
 * constraint and values must propagate down the entire length of the
792
 * chain. In case 2, the added constraint is weaker than the stay
793
 * constraint so it cannot be accomodated. The cost in this case is,
794
 * of course, very low. Typical situations lie somewhere between these
795
 * two extremes.
796
 */
797
function chainTest(n) {
798
  planner = new Planner();
799
  var prev = null, first = null, last = null;
800

    
801
  // Build chain of n equality constraints
802
  for (var i = 0; i <= n; i++) {
803
    var name = "v" + i;
804
    var v = new Variable(name);
805
    if (prev != null)
806
      new EqualityConstraint(prev, v, Strength.REQUIRED);
807
    if (i == 0) first = v;
808
    if (i == n) last = v;
809
    prev = v;
810
  }
811

    
812
  new StayConstraint(last, Strength.STRONG_DEFAULT);
813
  var edit = new EditConstraint(first, Strength.PREFERRED);
814
  var edits = new OrderedCollection();
815
  edits.add(edit);
816
  var plan = planner.extractPlanFromConstraints(edits);
817
  for (var i = 0; i < 100; i++) {
818
    first.value = i;
819
    plan.execute();
820
    if (last.value != i)
821
      alert("Chain test failed.");
822
  }
823
}
824

    
825
/**
826
 * This test constructs a two sets of variables related to each
827
 * other by a simple linear transformation (scale and offset). The
828
 * time is measured to change a variable on either side of the
829
 * mapping and to change the scale and offset factors.
830
 */
831
function projectionTest(n) {
832
  planner = new Planner();
833
  var scale = new Variable("scale", 10);
834
  var offset = new Variable("offset", 1000);
835
  var src = null, dst = null;
836

    
837
  var dests = new OrderedCollection();
838
  for (var i = 0; i < n; i++) {
839
    src = new Variable("src" + i, i);
840
    dst = new Variable("dst" + i, i);
841
    dests.add(dst);
842
    new StayConstraint(src, Strength.NORMAL);
843
    new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
844
  }
845

    
846
  change(src, 17);
847
  if (dst.value != 1170) alert("Projection 1 failed");
848
  change(dst, 1050);
849
  if (src.value != 5) alert("Projection 2 failed");
850
  change(scale, 5);
851
  for (var i = 0; i < n - 1; i++) {
852
    if (dests.at(i).value != i * 5 + 1000)
853
      alert("Projection 3 failed");
854
  }
855
  change(offset, 2000);
856
  for (var i = 0; i < n - 1; i++) {
857
    if (dests.at(i).value != i * 5 + 2000)
858
      alert("Projection 4 failed");
859
  }
860
}
861

    
862
function change(v, newValue) {
863
  var edit = new EditConstraint(v, Strength.PREFERRED);
864
  var edits = new OrderedCollection();
865
  edits.add(edit);
866
  var plan = planner.extractPlanFromConstraints(edits);
867
  for (var i = 0; i < 10; i++) {
868
    v.value = newValue;
869
    plan.execute();
870
  }
871
  edit.destroyConstraint();
872
}
873

    
874
// Global variable holding the current planner.
875
var planner = null;
876

    
877
function deltaBlue() {
878
  chainTest(100);
879
  projectionTest(100);
880
}